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A New Finite Element Model for Reduced Order
Electromagnetic Modeling

Yu Zhu, Student Member, IEEE,and Andreas C. Cangellaris, Fellow, IEEE

Abstract—This paper introduces a new formulation suitable
for direct model order reduction of finite element approximations
of electromagnetic systems using Krylov subspace methods. The
proposed formulation utilizes a finite element model of Maxwell’s
curl equations to generate a state-space representation of the
electromagnetic system most suitable for the implementation of
model order reduction techniques based on Krylov subspaces.
It is shown that, with a proper selection of the finite element
interpolation functions for the fields, the proposed formulation is
equivalent to the commonly used approximation of the vector wave
equation with tangentially continuous vector finite elements. This
equivalence is exploited to improve the computational efficiency
of the model order reduction process.

Index Terms—FEM formulation, model order reduction.

I. INTRODUCTION

A SYMPOTIC waveform evaluation (AWE) is popular in
FEM modeling for fast frequency sweep and macro-mod-

eling of electromagnetic components [1], [2]. However, because
of lack of numerical robustness [3], its bandwidth of accuracy
does not improve with increasing the order of the Pade approxi-
mation effected by AWE. Therefore, AWE has to be performed
on multiple expansion frequencies for broadband response. Be-
cause of this deficiency of the AWE process, more efficient and
robust model order reduction techniques based on Krylov sub-
spaces have been the topic of significant research, primarily in
the area of very large circuit simulation [3], [4]. The encour-
aging results from the application of Krylov subspace-based
model order reduction in large circuit simulation have prompted
interest for their adoption and application for the reduction of
finite element approximations of general electromagnetic prob-
lems. One of the primary obstacles in this effort has been the
lack of a suitable state-space representation of the discrete elec-
tromagnetic system. To explain, the most common FEM formu-
lation for the electromagnetic problem is the one based on the
vector wave equation, and its matrix form for the general case
of lossy media and unbounded domains exhibits both linear and
quadratic frequency dependence. This limits the direct applica-
tion of Krylov subspace methods for model order reduction of
such FEM models to bounded lossless domains where the linear
dependence on frequency is absent [5].
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As clearly demonstrated in [6], discrete approximations of
electromagnetic problems based on Maxwell’s curl equations
are directly compatible with Krylov subspace model order re-
duction methods. The major disadvantage of such a formula-
tion is the doubling of the size of the discrete problem, since
now both electric and magnetic fields are involved in the vector
of unknowns. This impacts the computational efficiency of the
iterative process involved in the generation of the Krylov sub-
space. A way to circumvent this difficulty is presented in this
paper.

II. PROPOSEDFEM MODEL

The development begins by considering Maxwell’s equations
in the Laplace domain,

(1)

where . The discrete form of the equations is obtained
through the discretization of the computational domain, and the
expansion of and in the tangentially-continuous vector
(TV) space , and the normally-continuous vector (NV) space

, respectively [7].
Let denote a basis function of and a basis func-

tion of . Application of Galerkin’s method, where the curl
equations (1) are multiplied by and , respectively, and in-
tegrated over the domain of interest, yields

(2)

where points out of the computational domain.
is the surface of physical ports that will be used for the

multi-port representation of the system. Let us assume, for the
sake of simplicity, that involves only one port and its modes
are known. Thus, can be expanded as

(3)

where is the expansion coefficient and is the tangen-
tial magnetic field of the th mode on .
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is the truncation surface of the unbounded portion of the
domain. For our purposes, a first-order absorbing boundary con-
dition (ABC) is imposed on

(4)

where is the surface impedance. From these equations, the
matrix form of the FEM approximation is obtained as

(5)
where the vectors and contain the expansion coefficients of

and , respectively, contains the coefficients , and

(6)

In compact form, the discrete system of (5) is given by

(7)

where and

(8)

Similarly, the tangential electrical field on is also ex-
panded in terms of the electric mode functions

(9)

The desired outputs are the expansion coefficientsfor the
tangential electric field on . In matrix form, the vector
of these coefficients is obtained from the solution of (7) as

(10)

where the elements of the matrixare given by

(11)

Equation (10) defines a generalized mode impedance matrix that
captures the electromagnetic properties of the structure inside
the computational domain through a global impedance relation-
ship between the tangential magnetic and electric fields on the
ports .

The form of (10) exhibits linear frequency dependency
and thus is directly compatible with model order reduction
algorithms based on Krylov subspaces. For example, the
PRIMA algorithm of [4] could be used. However, in the
process of generating the orthonormal base of Krylov sub-
space [6], , where ,

, is expansion complex frequency, and
is order of the reduced-order model, the LU factorization

of the matrix is involved. Considering that both
electric and magnetic fields are solved for in this formulation,
the dimension of this matrix is twice that of a vector finite
element approximation of the vector wave equation for the
electric field. So, it appears that the ability to handle unbounded
regions and lossy media in a way compatible with Krylov
subspace model order reduction methods comes at the expense
of increased computational cost. It is shown next that this extra
computational cost can be avoided.

III. EQUIVALENCE OF TWO WEAK FORMULATIONS

In this section it is shown that the FEM formulation given in
(5) is equivalent to the one associated with the weak form of the
vector wave equation

(12)

where

(13)

and , and are as defined in (6).
To prove the equivalence we need to show that the elimination

of from the system in (5) leads to an equation forthat is
identical to (12). It is straightforward to show that this requires
the proof of the following equality:

(14)

If is assumed to be constant or piecewise constant, the above
relationship, written in a form that explicitly indicates the ele-
ments of the matrices, becomes

(15)

where and are the dimensions of the vector spacesand
, respectively.

It has been pointed out in [7] that Whitney-1 () and
Whitney-2 ( ) forms are related as

(16)

More specifically, is the lowest-order TV space containing
the zeroth-order gradient and first-order nongradient compo-
nents; is the lowest-order NV space containing the zeroth-
order curl and first-order noncurl components. Because of (16),
the bases in and are related

...
...

(17)

where is the transition matrix between the two spaces.
Substitution of (17) in the matrices on both sides of (15) leads
directly to the desired result, namely the validity of the equality
stated in (14).
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Fig. 1. Input impedance of a microstrip patch antenna. “Exact” solution refers
to the response calculated one frequency point at a time from a direct solution
of the vector wave equation.

The useful consequence of this equivalence for the purposes
of Krylov model order reduction is that in the generation of
the orthonormal bases of Krylov subspace ,

can be performed efficiently as a two-step process.
Step 1 involves the calculation of the electric field vector of un-
known , and is based on the one-time LU factorization of the
matrix . This matrix is much smaller than the
matrix that would have to be factored otherwise. The
second step involves the calculation of the magnetic flux vector
of unknown as follows:

(18)

IV. NUMERICAL RESULTS

To demonstrate the validity of the proposed formulation and
the associated model order reduction through Krylov methods,
we consider the broadband extraction of the electromagnetic re-
sponse of a microstrip patch antenna. The dimensions of the
antenna are shown in the insert of Fig. 1. First order ABC’s
are used at the top and side truncation boundaries of the do-
main. The distance of the ABC boundaries from the patch are

mm at the top and mm at the sides. The representation
of the fields on the microstrip port boundary is in terms of the
microstrip modes. The objective of model order reduction is to
generate directly a reduced-order model with the response valid
over a broad frequency range. For the purposes of this numer-
ical example, the bandwidth of interest is GHz,

and the expansion frequency GHz. It is at this
frequency that the LU decomposition of the FEM matrix in (12)
is performed. The number of edge (electric field) unknowns is
23 177, while the number of facet (magnetic flux) unknowns is
43 012. Thus, the proposed methodology requires the LU de-
composition of a matrix of size 23 177 instead of one of size
66 189 that would be required otherwise.

The total CPU time for a single-frequency LU decomposi-
tion of the sparse FEM matrix of size 23 117 and the generation
of a macromodel of order 25 requires less than 4 min on a Pen-
tium III (500 MHz) PC with 256 MB of memory. As depicted in
Fig. 1, the reduced-order model of order 25 provides for excel-
lent agreement over the entire bandwidth. This method is much
faster than AWE, since AWE would have to be performed at (at
least) three expansion frequencies, one on either end of the fre-
quency bandwidth of interest and one at the center of the band-
width, in order to capture accurately the response over the entire
bandwidth.

V. CONCLUSION

In conclusion, this paper has demonstrated how Krylov model
order reduction algorithms can be used for fast frequency sweep
of lossy electromagnetic systems in unbounded domains ap-
proximated through an FEM model. Even though the FEM dis-
crete model is generated for the system of Maxwell’s curl equa-
tions, it is shown that use of proper set of spaces for the ex-
pansion of the electric field and magnetic flux density makes
the model equivalent to the one obtained from an FEM approx-
imation of the vector wave equation for the electric field only.
This equivalence is exploited to keep the computational cost of
the generation of the Krylov subspace and the associated re-
duced-order model approximately equal to that required for the
direct solution of the popular vector wave equation-based FEM
model at a single frequency.
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